Decreased breath excretion of redox active iron in COPD: a protective failure?

نویسندگان

  • Sharon Mumby
  • Junpei Saito
  • Ian M Adcock
  • Kian Fan Chung
  • Gregory J Quinlan
چکیده

Recent observational and genetic studies have highlighted a potential role for disrupted iron homeostasis in stable and exacerbating chronic obstructive pulmonary disease (COPD). Thus iron deficiency that is not limited to anaemia [1] and single nucleotide polymorphism in the gene encoding iron regulatory protein-2 [2], a key regulatory factor involved in cellular iron turnover and control, have been identified in this population. Disrupted systemic iron homeostasis is likely to limit iron availability for metabolic purposes due to overriding effects on tissue storage rather than on mobilisation and limitation of uptake from the gut. A specific pro-oxidant pool of iron (free or loosely bound ions, which are redox active/catalytic for damaging oxidant production) is measurable in exhaled breath condensate (EBC) [3]. While iron is essential for life, particularly for aerobes, poor or altered iron handling results in adverse effects related to oxidant production, microbial virulence, altered redox signalling events and altered cellular fate, including remodelling. This study was therefore undertaken to gain insight into iron handling in lungs and airways, and the extent to which these processes may be altered in COPD. Studies were undertaken to measure this specific iron pool by the bleomycin method [4] utilising EBC samples collected as previously described [3] and obtained from normal healthy individuals, healthy smokers and patients with COPD (current and ex-smokers). Serum levels of hepcidin and interleukin (IL)-6, known regulators of iron homeostasis, were also measured.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold, Silver and Iron in Iron Oxy-hydroxide Precipitate Formed in Process of Acid Mine Drainage

Oxidation of sulfide-containing ores is the main cause of Acid Mine Drainage (AMD), which is an environmental problem associated with both the abandoned and active mines. Iron-bearing sulfide minerals can be oxidized and form mine waters with high sulfate content, low pH, high electrical conductivity, high redox potential, and high concentrations of iron, aluminum, and other heavy metals. In th...

متن کامل

Renal Fractional Excretion of Sodium in Relation to Arterial Blood Gas and Spirometric Parameters in Chronic Obstructive Pulmonary Disease

Introduction: Arterial gas derangement could change urinary sodium excretion in Chronic Obstructive Pulmonary Disease (COPD) patients.There are very few and conflicting data in regards to the measurement of fractional excretion of sodium in COPD patients. The main aim of this study was to assess the relationship between renal fractional excretion of sodium(FeNa) with arterial blood gas and spir...

متن کامل

The role of nitric oxide in the protective action of remote ischemic per-conditioning against ischemia/reperfusion-induced acute renal failure in rat

Objective(s): We investigated the role of nitric oxide (NO) in the protective effects of remote ischemic per-conditioning (rIPerC) on renal ischemia/reperfusion (I/R) injury in male rats. Materials and Methods: I/R treatment consisted of 45 min bilateral renal artery ischemia and 24 hr reperfusion interval. rIPerC was performed using four cycles of 2 min occlusions of the left femoral artery an...

متن کامل

مقایسه کیفوز توراسیک و ضخامت عضله دیافراگم میان زنان مبتلا به بیماری مزمن انسدادی ریه و زنان سالم

 Background and Objective: Chronic obstructive pulmonary disease (COPD) causes shallow breathing, low oxygen, muscular weakness and reduced mobility. The most common symptoms of COPD is shortness of breath and a chronic cough with sputum. Despite the high prevalence of this disease and effective role of physical therapy, there is a noticeable lack of research in this area. Therefore, t...

متن کامل

Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2016